Advertisement

Genomics, Personalized Medicine, and Pediatrics

      Abstract

      Genomic discoveries are advancing biomedicine at an ever-increasing pace. Pediatrics is near the epicenter of these discoveries, which are revising our understanding of the genome and its function. Since the completion of the Human Genome Project in 2003, dramatic reductions in the cost of genotyping, and more recently sequencing, have permitted the study of the genomes of a great number of species as well as humans. These studies have led to insights on gene regulation and the complex interplay of factors responsible for normal development and biology. Study of single-gene disorders has greatly benefited from the genomics revolution and tests are now available for well over 2000 Mendelian conditions; availability of these tests are changing screening and diagnosis paradigms for rare conditions. Genomics is also yielding an increased understanding of common conditions such as diabetes, obesity, asthma, cancers, and mental health conditions. Personalized medicine, an approach to care in which an individual's genomic information is used to help tailor interventions to maximize health outcomes, is rapidly becoming a reality for a variety of conditions. Though challenges remain in translating new genomic insights into improved patient health, today's pediatricians and their patients will increasingly benefit from this watershed moment in the biological sciences.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Academic Pediatrics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Korf B.R.
        • Rehm H.L.
        New approaches to molecular diagnosis.
        JAMA. 2013; 309: 1511-1521
        • Feero W.G.
        • Guttmacher A.E.
        • Collins F.S.
        Genomic medicine—an updated primer.
        N Engl J Med. 2010; 362: 2001-2011
        • Manolio T.A.
        Genomewide association studies and assessment of the risk of disease.
        N Engl J Med. 2010; 363: 166-176
      1. Genetics Home Reference. Available at: http://ghr.nlm.nih.gov/. Accessed May 6, 2013.

      2. Talking glossary of genetic terms. Available at: http://www.genome.gov/glossary. Accessed May 6, 2013.

        • Collins F.S.
        • Morgan M.
        • Patrinos A.
        The Human Genome Project: lessons from large-scale biology.
        Science. 2003; 300: 286-290
        • Marshall E.
        Human genome. Rival genome sequencers celebrate a milestone together.
        Science. 2000; 288: 2294-2295
      3. International Consortium Completes Human Genome Project. Available at: http://www.genome.gov/11006929. Accessed November 30, 2012.

        • Collins F.S.
        • Green E.D.
        • Guttmacher A.E.
        • et al.
        • Institute US National Human Genome Research Institute
        A vision for the future of genomics research.
        Nature. 2003; 422: 835-847
        • Gresham D.
        • Dunham M.J.
        • Botstein D.
        Comparing whole genomes using DNA microarrays.
        Nat Rev Genet. 2008; 9: 291-302
        • Klein R.J.
        • Zeiss C.
        • Chew E.Y.
        • et al.
        Complement factor H polymorphism in age-related macular degeneration.
        Science. 2005; 308: 385-389
      4. Catalog of published genome-wide association studies. Available at: http://www.genome.gov/gwastudies/. Accessed November 30, 2012.

        • Miller D.T.
        • Adam M.P.
        • Aradhya S.
        • et al.
        Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies.
        American journal of human genetics. 2010; 86: 749-764
        • Hoheisel J.D.
        Microarray technology: beyond transcript profiling and genotype analysis.
        Nat Rev Genet. 2006; 7: 200-210
        • Marchionni L.
        • Wilson R.F.
        • Wolff A.C.
        • et al.
        Systematic review: gene expression profiling assays in early-stage breast cancer.
        Ann Intern Med. 2008; 148: 358-369
      5. DNA sequencing costs. Available at: http://www.genome.gov/sequencingcosts/. Accessed November 30, 2012.

      6. Nature ENCODE Explorer. Available at: http://www.nature.com/encode/#/threads. Accessed November 30, 2012.

      7. ENCODE data describes function of human genome. Available at: http://www.genome.gov/27549810. Accessed May 6, 2013.

        • ENCODE Project Consortium
        • Birney E.
        • Stamatoyannopoulos J.A.
        • et al.
        Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
        Nature. 2007; 447: 799-816
        • Esteller M.
        Non-coding RNAs in human disease.
        Nat Rev Genet. 2011; 12: 861-874
        • Jansson M.D.
        • Lund A.H.
        MicroRNA and cancer.
        Mol Oncol. 2012; 6: 590-610
        • Dylla L.
        • Moore C.
        • Jedlicka P.
        MicroRNAs in Ewing sarcoma.
        Front Oncol. 2013; 3: 65
        • Moffatt M.F.
        • Gut I.G.
        • Demenais F.
        • et al.
        A large-scale, consortium-based genomewide association study of asthma.
        N Engl J Med. 2010; 363: 1211-1221
        • Cho J.H.
        • Gregersen P.K.
        Genomics and the multifactorial nature of human autoimmune disease.
        N Engl J Med. 2011; 365: 1612-1623
        • McCarthy M.I.
        Genomics, type 2 diabetes, and obesity.
        N Engl J Med. 2010; 363: 2339-2350
        • Wheeler E.
        • Huang N.
        • Bochukova E.G.
        • et al.
        Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity.
        Nat Genet. 2013; 45: 513-517
        • Wain L.V.
        • Verwoert G.C.
        • O’Reilly P.F.
        • et al.
        Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
        Nat Genet. 2011; 43: 1005-1011
        • Manolio T.A.
        • Collins F.S.
        • Cox N.J.
        • et al.
        Finding the missing heritability of complex diseases.
        Nature. 2009; 461: 747-753
        • Feenstra B.
        • Geller F.
        • Krogh C.
        • et al.
        Common variants near MBNL1 and NKX2–5 are associated with infantile hypertrophic pyloric stenosis.
        Nat Genet. 2012; 44: 334-337
        • Garcia-Barcelo M.M.
        • Tang C.S.
        • Ngan E.S.
        • et al.
        Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease.
        Proc Natl Acad Sci U S A. 2009; 106: 2694-2699
        • Schork N.J.
        • Murray S.S.
        • Frazer K.A.
        • et al.
        Common vs. rare allele hypotheses for complex diseases.
        Curr Opin Genet Dev. 2009; 19: 212-219
      8. 1000 Genomes. A deep catalog of human genetic variation. Available at: http://www.1000genomes.org/about. Accessed November 30, 2012.

        • Genomes Project Committee
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • Abecasis G.R.
        • Auton A.
        • Brooks L.D.
        • et al.
        • Genomes Project Committee
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Tennessen J.A.
        • Bigham A.W.
        • O’Connor T.D.
        • et al.
        Evolution and functional impact of rare coding variation from deep sequencing of human exomes.
        Science. 2012; 337: 64-69
      9. Phenylalanine hydroxylase deficiency. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1504/. Accessed May 6, 2013.

        • Relton C.L.
        • Davey Smith G.
        Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment.
        PLoS Med. 2010; 7: e1000356
        • Heijmans B.T.
        • Tobi E.W.
        • Stein A.D.
        • et al.
        Persistent epigenetic differences associated with prenatal exposure to famine in humans.
        Proc Natl Acad Sci U S A. 2008; 105: 17046-17049
        • Suva M.L.
        • Riggi N.
        • Bernstein B.E.
        Epigenetic reprogramming in cancer.
        Science. 2013; 339: 1567-1570
      10. Prader-Willi syndrome. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1330/. Accessed May 6, 2013.

        • Ho A.S.
        • Turcan S.
        • Chan T.A.
        Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management.
        Onco Targets Ther. 2013; 6: 223-232
        • Drong A.W.
        • Lindgren C.M.
        • McCarthy M.I.
        The genetic and epigenetic basis of type 2 diabetes and obesity.
        Clin Pharmacol Ther. 2012; 92: 707-715
        • Yang I.V.
        • Schwartz D.A.
        Epigenetic mechanisms and the development of asthma.
        J Allergy Clin Immunol. 2012; 130: 1243-1255
        • Susiarjo M.
        • Sasson I.
        • Mesaros C.
        • et al.
        Bisphenol a exposure disrupts genomic imprinting in the mouse.
        PLoS Genet. 2013; 9: e1003401
        • Suzuki M.
        • Greally J.M.
        Genome-wide DNA methylation analysis using massively parallel sequencing technologies.
        Semin Hematol. 2013; 50: 70-77
      11. Thiopurine S-methyltransferase. Available at: http://www.pharmgkb.org/gene/PA356. Accessed May 6, 2013.

      12. US Food and Drug Administration. FDA approves Kalydeco to treat rare form of cystic fibrosis. Available at: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm289633.htm. Accessed May 6, 2013.

        • Human Microbiome Project Committee
        A framework for human microbiome research.
        Nature. 2012; 486: 215-221
        • Human Microbiome Project Committee
        Structure, function and diversity of the healthy human microbiome.
        Nature. 2012; 486: 207-214
        • Johnson C.L.
        • Versalovic J.
        The human microbiome and its potential importance to pediatrics.
        Pediatrics. 2012; 129: 950-960
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635-1638
        • Morowitz M.J.
        • Poroyko V.
        • Caplan M.
        • et al.
        Redefining the role of intestinal microbes in the pathogenesis of necrotizing enterocolitis.
        Pediatrics. 2010; 125: 777-785
        • Cho I.
        • Blaser M.J.
        The human microbiome: at the interface of health and disease.
        Nat Rev Genet. 2012; 13: 260-270
        • Malik T.
        • Mannon P.
        Inflammatory bowel diseases: emerging therapies and promising molecular targets.
        Front Biosci. 2012; 4: 1172-1189
        • Relman D.A.
        Microbial genomics and infectious diseases.
        N Engl J Med. 2011; 365: 347-357
        • Chin C.S.
        • Sorenson J.
        • Harris J.B.
        • et al.
        The origin of the Haitian cholera outbreak strain.
        N Engl J Med. 2011; 364: 33-42
        • Rasko D.A.
        • Webster D.R.
        • Sahl J.W.
        • et al.
        Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany.
        N Engl J Med. 2011; 365: 709-717
        • Snitkin E.S.
        • Zelazny A.M.
        • Thomas P.J.
        • et al.
        Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing.
        Sci Transl Med. 2012; 4: 148ra116
        • Loman N.J.
        • Constantinidou C.
        • Christner M.
        • et al.
        A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4.
        JAMA. 2013; 309: 1502-1510
        • Koser C.U.
        • Holden M.T.
        • Ellington M.J.
        • et al.
        Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak.
        N Engl J Med. 2012; 366: 2267-2275
        • Lander E.S.
        Initial impact of the sequencing of the human genome.
        Nature. 2011; 470: 187-197
        • Gahl W.A.
        • Markello T.C.
        • Toro C.
        • et al.
        The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases.
        Genet Med. 2012; 14: 51-59
        • de Ligt J.
        • Willemsen M.H.
        • van Bon B.W.
        • et al.
        Diagnostic exome sequencing in persons with severe intellectual disability.
        N Engl J Med. 2012; 367: 1921-1929
        • Worthey E.A.
        • Mayer A.N.
        • Syverson G.D.
        • et al.
        Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease.
        Genet Med. 2011; 13: 255-262
      13. Counsyl. Available at: https://www.counsyl.com/. Accessed November 30, 2012.

      14. Committee opinion no. 545: noninvasive prenatal testing for fetal aneuploidy.
        Obstet Gynecol. 2012; 120: 1532-1534
        • Bodurtha J.
        • Strauss 3rd, J.F.
        Genomics and perinatal care.
        N Engl J Med. 2012; 366: 64-73
      15. Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children. Available at: http://www.hrsa.gov/advisorycommittees/mchbadvisory/heritabledisorders/. Accessed November 30, 2012.

        • Saunders C.J.
        • Miller N.A.
        • Soden S.E.
        • et al.
        Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units.
        Sci Transl Med. 2012; 4: 154ra135
      16. NIH seeks applications to study genomic sequencing in newborn period. Available at: http://www.genome.gov/27549767. Accessed November 30, 2012.

        • Friedman C.P.
        • Wong A.K.
        • Blumenthal D.
        Achieving a nationwide learning health system.
        Sci Transl Med. 2010; 2: 57cm29
        • Schully S.D.
        • Benedicto C.B.
        • Gillanders E.M.
        • et al.
        Translational research in cancer genetics: the road less traveled.
        Public Health Genomics. 2011; 14: 1-8
        • Hudson K.L.
        Genomics, health care, and society.
        N Engl J Med. 2011; 365: 1033-1041
      17. Scientific Vision Workshop on Developmental Origins of Health and Disease. Available at: http://www.nichd.nih.gov/vision/vision_themes/developmental_origins/Documents/Vision_DevOrig_WP_04212011.pdf. Accessed November 30, 2012.

      18. Genetics in Primary Care Institute. Available at: http://www.medicalhomeinfo.org/gpci.aspx. Accessed November 30, 2012.